Determination of the algebraic relations among special Γ-values in positive characteristic

نویسندگان

  • Greg W. Anderson
  • W. Dale Brownawell
  • Matthew A. Papanikolas
  • M. A. PAPANIKOLAS
چکیده

We devise a new criterion for linear independence over function fields. Using this tool in the setting of dual t-motives, we find that all algebraic relations among special values of the geometric Γ-function over Fq[T ] are explained by the standard functional equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Algebraic Relations among Special Zeta Values in Positive Characteristic

As analogue to special values at positive integers of the Riemann zeta function, we consider Carlitz zeta values ζC(n) at positive integers n. By constructing t-motives after Papanikolas, we prove that the only algebraic relations among these characteristic p zeta values are those coming from the Euler-Carlitz relations and the Frobenius p-th power relations.

متن کامل

Geometric Gamma Values and Zeta Values in Positive Characteristic

In analogy with values of the classical Euler Γ-function at rational numbers and the Riemann ζ-function at positive integers, we consider Thakur’s geometric Γ-function evaluated at rational arguments and Carlitz ζ-values at positive integers. We prove that, when considered together, all of the algebraic relations among these special values arise from the standard functional equations of the Γ-f...

متن کامل

Algebraic Independence of Carlitz Zeta Values with Varying Constant Fields

As an analogue to special values at positive integers of the Riemann zeta function, for each constant field Fpr with fixed characteristic p we consider Carlitz zeta values ζr(n) at positive integers n. The main theorem of this paper asserts that among the families of Carlitz zeta values ∪∞ r=1 {ζr(1), ζr(2), ζr(3), . . . }, all the algebraic relations are those algebraic relations among each in...

متن کامل

Frobenius Difference Equations and Algebraic Independence of Zeta Values in Positive Equal Characteristic

In analogy with the Riemann zeta function at positive integers, for each finite field Fpr with fixed characteristic p we consider Carlitz zeta values ζr(n) at positive integers n. Our theorem asserts that among the zeta values in ∪∞ r=1 {ζr(1), ζr(2), ζr(3), . . . }, all the algebraic relations are those relations within each individual family {ζr(1), ζr(2), ζr(3), . . . }. These are the algebr...

متن کامل

Linear Independence of Gamma Values in Positive Characteristic

We investigate the arithmetic nature of special values of Thakur’s function field Gamma function at rational points. Our main result is that all linear dependence relations over the field of algebraic functions are consequences of the Anderson-Deligne-Thakur bracket relations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003